## DIFFERENTIATION

1 A curve has the equation $x=\sqrt{y}$.
a Write down $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of $y$.
b Express the equation of the curve in the form $y=\mathrm{f}(x)$.
c Write down $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $x$.
d Hence verify that for this curve, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\left(\frac{\mathrm{~d} x}{\mathrm{~d} y}\right)}$.
2 Verify the relationship $\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} y}=1$ when
a $y=\mathrm{e}^{2 x-1}$,
b $y=x^{3}+2$,
c $x=\sqrt{\ln y}$.
3 Find expressions for $\frac{d y}{d x}$ in terms of $y$ in each case.
a $x=y^{2}+3$
b $x=(y-1)^{3}$
c $x=\tan y$
d $x=\ln (3 y+2)$
e $x=\sin ^{2} y$
f $x=\frac{y-2}{\mathrm{e}^{y}}$

4 The curve $C$ has the equation $x=y^{3}-4 y^{2}$.
a Find $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of $y$.
b Find an equation for the tangent to $C$ at the point on the curve with $y$-coordinate 3 .
5 Given that $y=\ln (a x+b)$, where $a$ and $b$ are constants,
a express $x$ as a function of $y$,
b find $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of $y$.
c Hence, prove that $\frac{\mathrm{d}}{\mathrm{d} x}[\ln (a x+b)]=\frac{a}{a x+b}$.
6 A curve has the equation $y=3^{x}$.
a Express the equation of the curve in the form $x=\mathrm{f}(y)$.
b Find $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of $y$.
c Hence, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $x$.
d Find an equation for the tangent to the curve at the point $(2,9)$.

